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INTRODUCTION 
 
Higher and more sustained cannon combustion-gas temperatures have led to interest in ceramics as a 

thermal barrier material at a cannon bore.  Some initial work with SiC [1] showed cracks at a surface heated by a 
laser to similar temperature and duration as severe cannon firing. Finite difference and solid mechanics analysis of 
the thermal damage indicated that failure near the surface occurred when the transient thermal stress exceeded the 
reduced high-temperature compressive strength, leading to permanent compressive strain and subsequent tensile 
residual stress and cracking upon cooling. The purpose here is to perform laser-heating tests with seven additional 
ceramics and to compare damage from laser heating with that predicted from modeling hot-gas heating typical of 
cannon firing. In this case, the finite difference calculation of transient temperature includes detailed time-varying 
values of cannon gas temperature and convection coefficient, allowing a more realistic characterization of cannon 
thermal damage. 
 
CERAMIC MATERIALS AND PROPERTIES 

 
Table I lists the seven ceramics studied, along with properties E, ? and a used in the analysis. The thermal 

conductivity, k, and diffusivity, d, were determined for temperatures of 300-1270 K using a laser flash method [2]. 
Compressive strengths over 300-1070 K were determined from elevated temperature hardness tests, using the known 
 

Table I – Ceramics investigated and selected properties 
_________________________________________________________________________________________________________ 
Ceramic             Elastic    Poisson’s   Thermal           Thermal    Thermal          Compressive 

          Modulus     Ratio      Expansion      Conduction             Diffusivity           Strength 
            E; GPa        ?   --      a; K-1              k; W/m K                 d; cm2/s               SC; GPa 

_________________________________________________________________________________________________________ 

ZrO2    210   0.23       12.E-6          12.7 T-0.247    0.126 T-0.434   531 T-0.882 
Al2O3    370   0.22         8.5E-6         9610 T-1.011    175 T-1.324   780 T-0.845 
SiAlON   320   0.25       3.3E-6          28.3 T-0.170  0.714 T-0.503      35.0 T-0.283 

Si3N4    310   0.27       3.2E-6           339 T-0.442      14.1 T-0.844      33.3 T-0.324 
SiC-2  410   0.14       4.8E-6         2000 T-0.567    64.8 T-0.927      182 T-0.569   
SiC-1  430   0.17       4.9E-6         5240 T-0.687     218 T-1.086    226 T-0.590 
SiC-3  410   0.14       4.5E-6       33600 T-0.922    1110 T-1.287    445 T-0.665 
_________________________________________________________________________________________________________ 
 
relationship [3] that compressive strength, SC , is well approximated as one third of hardness. Vickers hardness, HV, 
was used in the tests here in units of kg/mm2. The resulting expression for SC in units of GPa is: 
 

SC = (1/3) HV • 0.0098 GPa/(kg/mm2)             (1) 
 
Power-law expressions were fitted to the k, d and SC data at room and elevated temperature, as shown in Table I for 
each of the seven ceramics and in the example plots of Figure 1 for Si3N4. The power law fits well and remains 
positive at high temperature, a requirement for thermal-mechanical modeling. 
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Figure 1.  Example model input data for Si3N4        Figure 2.  Hot gas input data for cannon firing 
 
 
THERMO-MECHANICAL MODELING 

 
Modeling of the transient temperatures and associated thermal damage at a cannon bore is similar to that in 

prior work [1,4], but with two improvements, summarized in Figures 1 and 2. First, the current modeling 
incorporates compressive strength vs temperature (Figure 1), gleaned from hot hardness measurements over a range 
of temperature for each of the seven ceramics. Prior work used literature values of hardness for generally similar 
materials. Second, the current model also incorporates detailed time-varying cannon combustion gas temperature 
and convection coefficient data (Figure 2) in the finite difference calculation of the near-bore temperature 
distribution. The hot gas data in Figure 2 were obtained from interior ballistic calculations at the axial location of 
most severe erosion damage in tank cannon firing. Note the much higher convection coefficient during the first 
millisecond, a significant change from the constant value over several milliseconds used in prior modeling work.  
 
 
PULSED LASER HEATING RESULTS 

 
A Nd:YAG laser described in prior work [1,5] was used here to apply a single, uniform, circular heating 

pulse to the surface of each 2 mm thick, 8 mm square ceramic sample. The heating pulse diameter was 1.8 mm for 
SiAlON, 2.6 mm for ZrO2, and 3.4 mm for the other materials.  Two or more samples of each of the seven ceramics 
were heated, and the results here are from the sample whose total heat input was closest to 0.9 J/mm2, measured by 
calorimetry [5]. An analysis of the laser pulse profile showed a rapid increase and slow decrease in heating during 
the pulse, similar to the convection coefficient plot for cannon heating in Figure 2 but longer in duration. Based on 
this analysis, a constant heat-input pulse of 4 ms was used to approximate laser heating in modeling discussed later. 

 
The 4 ms, 0.9 J/mm2 laser heating tests showed very limited damage for the three types of SiC. Only one of 

two SiC-2 samples cracked as in prior work [1], and none of the SiC-1 and SiC-3 samples cracked. However, all 
ZrO2, Al2O3, Si3N4 and SiAlON samples cracked.  Metallographic cross-sections were prepared (unetched), from 
which optical and scanning electron micrographs were made, as shown in Figure 3. Two general features of the 
cracking seem to be [i] cracks normal to the surface with consistent 0.1-0.3 mm spacing and some opening; and [ii] 
cracks roughly parallel to the surface and about 0.1 mm below the surface with less opening. It appears that the 
normal cracks are formed by the mechanism of thermal expansion – permanent compressive deformation – tensile 
residual stress discussed in prior work and here. Further, it is suggested that the parallel cracks occur after the 
normal cracks have formed and opened, thereby allowing tension or shear stresses to develop near the tip of an 
opened normal crack and to cause cracking in directions other than normal to the surface, as discussed by Evans & 
Hutchinson [6]. 
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[a] Al2O3  (optical micrograph) 

 
[b] ZrO2  (scanning electron micrograph) 

 
[c] Si3N4  (optical micrograph) 

[d] SiAlON  (optical micrograph) 
 

Figure 3.  Damage in four ceramics after one 4 ms laser pulse at 0.9 J.mm2 total heat input 
 

Some specific comments on the Figure 3 micrographs follow. The Al2O3 sample appears to have undergone 
significant fragmentation in the cracked areas, so much so that the presence of parallel cracks is much obscured. The 
ZrO2 sample shows the clearest indication of normal cracks forming first and opening, followed by parallel cracks 
that later revert back to normal cracks. Note also the segments of surface material outlined by cracks, indicating 
impending fragmentation, as well as the distorted surface near the opened cracks, indicating that bending rotation 
may have occurred as a result of crack-face contact. The Si3N4 sample shows parallel cracks leading from near the 
tip of normal cracks, another indication that the normal cracks occurred first. The SiAlON sample shows small 
cracks (not easily seen in this photo) with changed direction at the tip of the normal cracks.  Of more interest is the 
apparent loss of material in the laser-heated area of the SiAlON sample. The left edge of the photo is near the center 
of the 1.8 mm diameter laser “spot”, and the right edge is near the outside of the spot. The line and arrows indicate a 
0.02 mm loss of material, believed to be due to melting or decomposition of some constituent of the SiAlON 
ceramic.  A general array of spherical globules was noted in the laser-heated area using a laser-scanning microscope 
before this sample was sectioned. None of the other six ceramics showed material loss or globules. 

0.1 mm 

0.1 mm 

0.1 mm 

0.1 mm material 
   loss 
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THERMO-MECHANICAL MODELING RESULTS 
 
Temperature Distributions 

 
Modeling of cannon gas heating and 0.9 J/mm2 laser heating was performed to obtain the near-surface peak 

temperature distributions (and the resulting thermal stresses discussed later) for the seven ceramics and to compare 
the relative severity of the two heating modes.  Figure 4 compares the laser and cannon heating temperatures for 
four of the ceramics, and Table II summarizes some of the key model results for all seven ceramics. 
 
                   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 – Peak model temperatures for laser and cannon gas heating 
 
 

Table II – Summary of model results for laser and cannon gas heating 
_____________________________________________________________________________________________________________________ 
     Conductivity,              Laser Heating;   heat input, Q = 0.9 J/mm2            Cannon Gas Heating;  Fig.2 
                   k, at 1270K  TSURF       aMEAS    T at aMEAS       aCALC                   TSURF         aCALC       Q  

       W/m oK          oK             mm            oK               mm                     oK              mm      J/mm2 
_____________________________________________________________________________________________________________________ 
ZrO2           2.21     --      0.16         790      0.16    2430      0.09        0.34 
Al2O3              7.20  3390      0.04        1710      0.13   2020      0.08        0.62 
SiAlON           8.50  3070      0.04        2080 0.01  2060        0        0.53 
Si3N4           14.1  2510      0.11        1230 0.01    1890        0        0.67 
SiC-2           33.2  1710      0.04        1440  0.03  1580      0.01        0.81      
SiC-1           37.3  1600        0          ---  0.02  1530      0.01        0.84 
SiC-3           45.2  1400        0          ---    0  1430        0        0.90 
_____________________________________________________________________________________________________________________ 
 

As expected, the temperature distributions in Figure 4 show a rapid drop with depth.  Also, some of the 
materials show significantly higher peak temperatures in laser heating than in cannon heating, particularly the 
materials with low thermal conductivity and diffusivity at high temperatures. In the laser heating model, 0.9 J/mm2 
is injected at the surface regardless of the material’s thermal properties, whereas in cannon heating, materials with 
lower thermal conductivity and diffusivity will tend to reject heat transfer from the gas as the surface temperature 
goes up. It is interesting to review the surface temperatures for laser and cannon heating, shown in Figure 4 and 
Table II. Note that the order of surface temperatures, from high to low, is well predicted by the inverse of elevated 
temperature conductivity, shown in Table II for 1270 K. At the risk of over-simplicity, this indicates a “rule of 
thumb” that transient surface temperatures follow the inverse of elevated temperature conductivity. 
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Results for ZrO2 and the other two types of SiC were not shown in Figure 4, to maintain clarity of the plots.  
The other SiC results were little different from those shown. The model temperatures for ZrO2 were very high (due 
to low conductivity) and so far above the temperatures of available properties that the results were suspect. 
 
 
Compressive Failure Predictions 

 
The temperature distribution results, discussed above, are used to calculate the biaxial transient 

compressive stresses, ST, using the following expression: 
 

ST = E a  (T – 300 oK) / (1 – ?)              (2) 
 
where E, a and ? are from Table I and T is the peak model temperature at a given location in the heated ceramic 
(plots such as Figure 4 ). When the transient compressive stress from Eq. 2 exceeds the elevated temperature 
compressive strength from Eq. 1, that is, when ST = SC, a permanent compressive displacement takes place, resulting 
in tensile residual stress and crack formation upon cooling.   

 
Plots that show this model comparison of transient compressive stress with compressive strength for six of 

the seven ceramics are shown in Figures 5 and 6, for laser heating and cannon heating, respectively.  The laser 
heating model results in Figure 5 predict that all ceramics except SiC-3 would crack, with crack depths 
approximated by the data points shown on the plots at the intersection of the compressive strength and transient 
compressive stress curves. These intersection points are listed in Table II as aCALC. Cracking was predicted for ZrO2, 
but these results were not shown, as discussed earlier in reference to Figure 4. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 

 
Figure 5 - Compressive failure predictions for model results from six ceramics with transient laser heating 
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Figure 6 - Compressive failure predictions for model results from six ceramics with transient cannon heating 

 
The cannon heating model results in Figure 6 show a marked improvement over the laser heating results, in 

that the predictions of crack depth (at the curve intersection points) are always at a smaller crack depth than those 
for laser heating. This is primarily a result of the rejection of cannon heat at high surface temperatures vs the 
injection of laser heat regardless of temperature, but it is also a result of the shorter heat pulse duration of cannon 
firing. As Table II shows, the cannon firing heat input (Q) is generally lower for materials with lower thermal 
conductivity at high temperature (1270K). These lower Q values indicate that the cannon heating was somewhat less 
severe than laser heating with Q=0.9 J/mm2.  

 
Finally, a ranking of suitability of the ceramics as a cannon bore thermal barrier material can be made using 

data from Table II. The preferred ceramics would be those with aCALC = 0 and the lowest surface temperature for the 
cannon heating results. This rationale would rank SiC-3, Si3N4 and SiAlON as the most suitable; SiC-1 and SiC-2 as 
intermediate; and Al2O3 and ZrO2 as the least suitable for a thermal barrier material under cannon bore firing 
conditions. This analysis and ranking of ceramics for cannon applications could be improved by additional thermal 
property and hot hardness data at temperatures up to those at which the damage occurs, indicated by the T at aMEAS 
data in Table II.         
 
 
SUMMARY 

 
(i) Thermal damage modeling in ceramics was improved: by using detailed temperature-varying cannon gas 

temperature and convection coefficient data as input to finite difference transient temperature calculations; and by 
comparing compressive strength from hot hardness with near-surface compressive stress from transient heating. 

 
(ii) Thermal damage cracks following a cannon-firing level of laser heating were observed in ZrO2, Al2O3, 

SiAlON, Si3N4, and one of three types of SiC. The cracking mechanism is believed to be thermal expansion 
resulting in  permanent compressive deformation followed by tensile residual stress and cracking upon cooling. Less 
damage is indicated for cannon heating because of the rejection of heat at high surface temperatures compared with 
the surface injection of laser heat, but also because of the shorter heat pulse of cannon firing.  

 
(iii) Model prediction of thermal damage from typical tank cannon combustion-gas heating ranks one type 

of SiC as #1,  Si3N4as #2 and SiAlON as #3, in respect to the best resistance to thermal cracks. Ranking of resistance 
to thermal cracks is based primarily on the ratio of transient compressive stress to compressive strength being below 
unity and, secondarily, on a low value of transient surface temperature.  
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